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Abstract

A three-dimensional electromagnetic particle-in-cell
code with Monte Carlo collision (PIC-MCC)has been
developed for MIMD parallel supercomputers. This
code uses a standard relativistic leapfrog scheme incor-
porated with Monte Carlo calculations to push plasma
particles and to calculate collisions.t effects on particle
orbits. A local finite-difference time-domain method is
used to update the self-consistent electromagnetic fields.
The code is implemented using the Generat Concurrent
PIC (GCPIC) algorithm which uses a domain decom-
position to divide the computation among the proces-
sors. Particles must be exchanged between processors
as they move among subdomains. We evaluate the per-
formance of this code using a 512-processor Intel Touch-
stone Delta, a 512-processor Intel Paragon, and a 256-
processor Cray T3D. It is shown that our code runs
with a high parallel efficiency of >95% for large size
problems. We have run PIC-MCC simulations using
162 million to 361 million particles with several million
collisions per time step. For these large scale simula-
tions, the particle push time achieved is in the range
of 100-115 nsecs/particle/time step, and the collision
calculation time in the range of a few hundreds nsecs
per collision. Compared with the performance on a sin-

gle CPU Cray C90, this represents a factor of 70-80
speedup.

. Introductio

Computer particle simulation has become a stan-
dard research tool for the study of non-linear kinetic
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problems in space and laboratory plasma physics re-
search. Collisionless plasma phenomena may be studied
using a particle-in-cell (PIC) code. A PIC code models
a plasma as hundreds of thousands of test particles and
follows the evolution of the orbits of individual test par-
ticles in the self-consistent electromagnetic fields{1, 2].
Each time step in a PIC code consists of two major
stages: the particle push to update the particle orbits
and calculate the new charge and/or current density,
and the field solve to update the electromagnetic fields.
Since the particles can be located anywhere within the
simulation domain but the macroscopic field quanti-
ties are defined only on discrete grid points, the par-
ticle push uses a “gather” step to interpolate fields from
grid points to particle positions and a “scatter” step
to deposit the charge/current of each particle to grid
points. To study those problems that involve collisions
between plasmas and neutral atoms, a particle-in-cell
with Monte Carlo collision (} >IC-MCC) can be used. In
a PIC-MCC code, a Monte Carlo scheme is incorporated
into the particle push stage of a PIC code to calculate
the collisional effect on plasina particle orbits|3].

While the particle simulation method allows one to
study the plasma phenomena from the very fundamen-
tat level, the scope of the physics that can be resolved
in a simulation study critically depends on the com-
putational power. The coroputationat time/cost and
computer meinory size restricts the time state, spatial
scale, and nuinber of particles that can be used in a
simulation. The cost of running three dimensional par-
ticle simulations on existing sequential supercomputers
limits the problems which can be addressed.

Recent advances in massively parallel supercomput-
ers have provided computational possibilities that were
previously not conceivable. To illustrate the state-of-
the-art of parallel supercomputers, in Table 1 we sum-
marize the hardwares of the three MIMD (Multiple In-
struction Multiple Data) parallel supercomputers op-




crating at Caltech andthe Jet I'repulsion Laboratory.
The Intel Touchstone Delta has 512 numerical nodes
each with a memory of 4 Mwords and a peak speed of 60
double-precision (75 single-precision) Mflops. The Intel
Paragonhas 512 numerical nodes each with a memory of
8 Mwords and a peak speed of 75 double-precision (100
single-precision) Mflops. The Cray T3D at JPL has 256
numerical nodes each with a memory of 8 Mwords and
a peak speed of 150 Mfiops. hence, the total mem-
ory size for Delta, Paragon, and Cray T3D) are 2.048
Gwords, 4.596 Gwords, and 2.048 Gwords respectively
and the total peak speed 30.7 Gflops, 38.4 Gfiops, and
38.4 Gflops respectively.

In a previous study, we have developed a three-
dimensional electromagnetic PIC code for MIMD par-
allel supercomputers|[4]. That code uses a relativistic
particle push, a local finite-difference time-domain so-
lution to the full Maxwell's equations, and the General
Concurrent PIC algorithm (GCPIC) which uses a do-
main decomposition to divide the computation among
the processors{5]. The 3D EM PIC code has been imple-
mented on the 512-processor Intel Delta, and has proven
to be very efficient. (The efficiency is > 95 % for prob-
lems with > 2 x10% particles/processor| 4].)

In this paper, we extend the previous work to a 31)
EM PIC-MCC code and implement this code on a 512-
processor Delta, a 51 2-processor Paragon, anda 256-
processor Cray T3D. In a simulation study, it is neces-
sary to obtain benchmark information such a.. the com-
puting speed and the simulation scale so one can decide
the feasibility and effectiveness of applying PIC-MCC
in a particular application. Hence, another objective of
this study is to use the resulting 3D EM PIC-MCC code
as a tool to benchmark the performances of the Delta,
Paragon, and T3D for very-large-scale PIC-MCC simu-
lations.

This paper is organized as follows: Section 2 dis-
cusses the algorithm used in our 31) EM PIC-MCC code
and the parallel implementation; Section 3 analyzes the
code performances on the Delta, Paragon, and Cray
T3D; and Section 4 contains a summary and conclu-
sions.

2. A Parallel 31) Electromagnetic PIC-MCC Code

The Algorithm

An electromagnetic PIC code solves Maxwell's equa-
tions for the macroscopic field and Newton’s second law
for individual particle trajectories:
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where relativistic effects are included in eq(b)(y=
1/4/1-V1/c?). To include collisions between plasma
particles and neutral atoms, one may include Monte
Carlo collsion calculation into a PIC code, i.e. a PIC-
MCC code (See Ref]3] for a review on PIC-MCGC code).

In our code, the electromagnetic field equations
are solved using a charge- conserving finite-difference
leapfrogging scheme, which was used by Sandia National
Laboratories in the Quicksilver code [7] and by Bune-

man et alin the Tristan code [8]. We choose this method X

(which is a “local” method) over transform methods
(which are “global” methods) because a method that
updates the field purely from the local data runs much
more efficiently in parallel {4]. In this scheme, one ob-
tains the current flux through every cell surface within
a time step dt,dtf"“/2 using a rigorous charge conser-
vation method for current deposit, which is described in
detail in [8]. Next, the electromagnetic field is updated
locally by finite-difference leapfrogging in time:
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where the superscripts n + 1/2 and n +4 1 represent the
time level. Thisscheme requires the use of a fully stag-
gered grid meshsystem (the Yee lattice [9]) in which
E and Jdt arc defined at midpoints of cell-edges while
the B components are defined at the midpoints of the
cell-surfaces.

The trajectory of each particle, if no collision has
occured, is integrated using a standard time-centering
leapfrog scheme discussed in [1]. Let ii = 'ﬂ-}, and the
leapfrog scheme for eq(5) is written as
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In eq(8),17)and B are interpolated from the grids to the
particle positions.




The code keeps track of the collision probability of
eachcharged particle. The probability that a charged

particle suffers a collision within time t is given by

H
Pt) = 1- exp(»J v;(t)dt) (10)
wherev; is the collision frequency for the jth collisional
processes. Hence, at each time step, for each particle,
the following collision calculation is performed:
a) Calculate the accumulated probability: Pz 1 -
exp(-Yv;dt).
m Chose a random number Pr., to decide whether a
collision has occured, and the collision type.
c) If a collision has occured, calculate the new velocity
of the particle after the collision from the equations for
conservation of maw, momentum, and energy|3].

Implementation on MIMI) Parallel Computers

The code is implemented using the General Con-
current PIC (GCPIC) algorithm developed by Liewer
and Decyk|5]. The GCPIC algorithm is designed to
make the most computationally intensive portion of a
particle code, the particle computation, run efliciently
on MIMD parallel computers. In general, the GCPIC
algorithm uses two spatial decompositions of the physi-
cal domain to divide the computation efliciently among
parallel processors: a primary decomposition to opti-
mize the parallel particle push computations (i.e., par-
ticle move and current deposit) and a secondary de-
composition to optimize the parallel field computations
(i.e., field update). In the primary decomposition, each
processor is assigned a subdomain and all the parti-
cles and grid points in it. Whcu a particle moves from
one subdomain to another, it must be passed to the ap-
propriate processors, which requires interprocessor com-
munication. The primary decomposition is chosen so
that both interpolations between the particles and the
grids (gather/scatter) can be done locally, e.g., with
no interprocessor communication. To ensure that the
gather/scatter can be performed locally, each proces-
sor stores guard cells, e.g., neighboring grid points sur-
rounding a processor's subdomain which belong to an-
other processor’'s subdomain. Fig. 1 illustrates a 2-
dimensional subdomain. Interprocessor communication
is necessary to exchange guard cell information.

For load balance, the primary decomposition subdo-
mains should have roughly the same number of particles
and the secondary decomposition subdomains should
have the same number of grid points. When the grid
is regular and the particle distribution is uniform, equal
volume subdomains are optimum for both the push and
field stages. Thus, for this case, theprimary and sec-
oudary decompositions are identical.

In our code, the Monte Carlo collision portion of the
code is completely local. Hence, the parallization of our
PIC-MCC code is identical to that of our PIC code dis-
cussed in Ref[4].Inthe code, the computation domain
can be partitioned iuto 1-, 2-, or 3-dimensional subdo-
mains (“slabs”, “rods”, or “cubes”) [6]. Fig. 2 shows
the flow chart of our parallel 31) electromagnetic P1C-
MCC code. The main loop uses seven major subrou-
tines. Particle Move, Monte Carlo Collision, Current
Deposit, and Field Update for Eand B (represented by
the rounded blocks in Fig. 2) are the essential compu-
tation blocksin a sequential M PIC-MCC code. On a
parallel computer, each processor executes these opera-
tions independently using its own data arrays. The com-
putations are linked together through message-passing
and global communications. The code has three ma-
jor message-passing subroutines: Particle Trade, Guard
Cell Summation, and Guard Cell Ezchange (represented
by the five rectangular blocks). A detailed discussion
on these message-passing subroutines can be found in
Ref[4]. The global boundary conditions are also im-
posed in these three subroutines to avoid additional
loops over grid points and particles. Currently our code
uses periodic boundary conditions.

On the Delta and Paragon, we implement the
message-passing based on the Express Cubix library.

On the Cray 13D, we implement the message-passing
using PVM.

3. Performance Analvsis

To evaluate the performance of our parallel 3D EM
PIC-MCC code, we use the following simple test case:
two electron beams are set to counter stream in a back-
ground of fixed ions and neutrals. The electrons within
each beam follow a Maxwellian distribution with ther-
mal velocity v,=0.05b¢c, and the drifting velocities are
taken to be v4 = £0.4¢c. The electrons beams interact
with the neutral background through collisions. For the
purpose of performance analysis, we want to keep the
total number of plasma particles in the system constant.
Hence, in this test case we only include elastic scatter-
ing in the MCC calculation, while other collisions are
turned off.

To analyze the code performance, we measure t be
total code time per timne step loop Ty,¢ as well as the
times spent by each of the seven major subroutines for a
series of runs. l.et us denote Zynove s Teurrent, X fldupdates
Tirade;Tgeam,Tgcs1y and Teon as the time spent by par-
ticle mnove, cuy rent deposit, field update, particle trade,
current guard cell summ ation, field guard cell exchange,



"\(L[/

.and Monte Carlo collision respectively. }From the mea-

sured subroutine times, we define the particle push time
(which includes the titnes onmoving particles, deposit-

ing currents, applying boundary conditions, and related

interprocessor communications as shown in Fig. 4):

7’7"“'" = Tynove -4 Tirade 4 Teurrent 7‘gcnu (]])
and the field solve time (which includes the times on
updating the ¥ and B fields, applying boundary con-
ditions, and related interprocessor communications as
shown in Fig. 4):

T Trgupdate + Toest (12)

We afso define the communication/boundary condition
time for particle push as

7vpunhcmuu ,

- q‘gc.m 4 7‘!radc (13)

and the total communication /boundary condition time
as

chc = q‘iradc + 7‘_qc‘nn + Tgc[l (14)

If only one processor is used, T'*'(1) is simply the time
spent on the global boundary conditions. When multi-
ple processors are used, T‘”‘(N,, > 1) is the sum of the
time spent by the code on communications and global
boundary conditions. When the number of processors
used is much larger then one, T is dominated by the
“pure” interprocessor communication and hence, it is a
good measure of the parallel communication cost [4].

As Table 1 shows, the Delta, Paragon, and Cray
T3D have different memory sizes. 10 benchmark Delta,
Paragon, and T3D, we compare the run times of the
3D EM PIC-MCC code on these computers in three
ways: 1) same problem size per node runs, 2) same total
size runs, and 3) maximum problem size runs. In same
problem size per node runs, we load the same problem on
each individual processor. In same total size runs, the
total problem size is the same on all three computers. In
mazimum problem runs, we run the maximum problem
allowed by the memory size of each computer. In all
cases, we also compare the performance as a function
of the processors used. Since all calculations are carried
out using the default word length (i.e. 8 bytes word
on T3D; 4 bytes word on Delta and Paragon), the T'3D
calculation doubles the precision of that on Delta and
Paragon.

Same Problem Size Per Node Runs

We first compare the performances of Delta,
Paragon, and 13D when each computcr({s\}loaded the
same problem. In each run series, we keep the problem
size on each individual processor fixed while increas-
ing the total number of processors. Hence, the total

problemn size is proportional to the number of proces-
sors used.

An important mea-sure of the performance on a con-
current computer is the parallel efficiency € which mea-
sures the effects of communication overhead and load
imbalance [10].  If there were Nno communications in-
volved and the processor loads were perfectly balanced,
the parallel efficiency would bee:100%. In this paper
we shall focus only on the eflfect due to communication
overhead. The simulation runs used in this paper ali
have near-perfect load balance because the particle dis-
tributions in these runs are nearly uniformn. The parallel
efficiency here is defined as

. Jie1)
Tyot (NN

e(N) (15)
where Ty,,(N) is the total loop time elapsed on a parallel
computer using N nodes.

We load the following problem onto Delta, Paragon,
and 71'3D:each processor has a cubic subdomain of 16 x
16x 16 cells and 3.16x 10® particles (~ 77 particles/cell).
This problem is scaled up inthree dimensions. When
this problem is loaded on 256 nodes, the total problem
size becomes 64 x 128x 128 (1 .05 million) cells and ahout
80.8 million particles. When the problem is loaded on
all 512 nodes of Delta and Paragon, The total problem
is then 128 x 128 x 128 (2.1 million) cells and 162 million
particles.

The parallel efficiencies of our code on T3D,
Paragon, and Delta are shown in Fig. 3. as a function
of the number of processors /N,. The results show that
a high parallel efficiency of ¢ > 95% has been achieved
on all three parallel computers. Since we have perfect
load balance for the test runs, the efficiency is degraded
only by interprocessor comnunications.

Fig. 4 shows in detail the times spent by different
portions of the code. In Fig. 4a, we compare the total
time and the total communication time. When only 1
node is used, 7'<*¢(1) consists of only the global bound-
ary condition time. Whenthe number of processors is
N, > 1, the major part of 7t is for “pure” parallel
communications. We find that 7'*¢ takes less then 4%
of Tyet. Not surprisingly, when the number of processors
used is much larger thanl, (N, >> 1) o 1-- T/ Ty ;.

In Fig. 4b, we plot the particle push time TP“"‘, field
solve time 7Y% and the Monte Carlo collision time
T.on- In Figs. 4cand 4d, we compare the computation
time and communicationi/boundary condition time for
the particle push and the field solve respectively. Since
the Monte Carlo collision part of the code is completely




local, there is no communication /boundary condition
time involved.

As ¥ig 4b shows, among the three portions of the
code, the particle push is the most expansive part as
expected. The field solve represents a negligible small
fraction of the total time: CI"“"’/’J‘,O, < 1%. The time

spent by the Monte Carlo collision is between 77*** and
T field

The particle push and field solve stage have been
analysed in detail in Wang et atj4]. Since each proces-
sor has equal number of grid cells and approximately
equal number of particles, the times spent by “produc-
tive” computations, particle moue, current deposit, and
field update are independent of the number of proces-
sors used. The communication/boundary condition
times Tirades; Tgcem, and Tycqr increases somewhat as
the node number increases. (For simulations performed
here, the increase is due to communication network
contention{d]. ) However, since they are much less than
the time spent by particle moue and current deposit,
Trush stays g constant as the number of processors is
increased. Hence, the communication overbead only has
a very small effect on the overall performance, In or-
der to achieve a high efficiency on para]le] computers,
the problem size on each processor need, to be large
enough. Wang et al "has shown that, when using 256
to 512 processors, the PIC part of the code can achieve
a parallel efficiency €>95% when the number of par-
ticles on each processor is > 2 X 10°. Even for small
problems with only ~ 5 x 10°particles/processor, the
PIC part still has a parallel efficiency of € ~ 76% [4].

The Monte Carlo collision part of the wc?\de is com-
pletely local. Hence, a PIC-MCC code has g even better
parallel efficiency than a PIC code. The Monte Carlo
collision time .. depends on the collision frequency
and time step. The collision frequency and time step
used for this run are of typical values used in practi-
cal applications: v = 0.1 and dt =- 0.125. This gives
a collision probability P =1- ezp{—wvdt)zr 0.02, i.e.
about 2 % of the totat particles undergoes a collision
within each time step. For P ~2%, we find Teon
is more than an order of magnitude less than TP“*h,
(Teonr/TP¥** ~ 1% on Delta, Teon/T?*** ~ 6% on
Paragon, and T..it/T?*** ~9% on T3D.) We have run
other simulations with P ~10%. Even for such a high
collision probability, we find T,y is still only a fraction
of TPush (T, n/TP¥*h < 20%).

‘he timing results plotted in Fig.4 reflect the fact
that the Cray T3D has a faster CPU and network com-
munication. For computations, even though the T3D
does the calculation with 8-byte words, the speed of our
code on the T3D is about 2.05 times faster than that

of the Paragon, and about 2.4 times faster than that
of the Delta. For interprocessor communications, the
T3D is also faster (1°(13D)/T*( Paragon)~ 0.48,
T (T3D)/T( Paragon).. 0.40) From Fig. 4, we
note that the 131 also has # much less communication

contention than theDeltaand Paragon.

Same Total Size and Maximum Size Runs

We next compare the performances of Delta,
Paragon, and T3D) when each computer is loaded the
same totat size or the maximum problem allowed by its
memory size. When all processors are used, we find the
maximum memnory size that a user’s code can occupy on
each processor is approximately: 12 Mbytes (3 Mwords)
per processor on Delta, 23 Mbytes (5.8 Mwords) per
processor on Paragon, and 54 Mbytes (6.7 Mwords) per
processor on T3D (note the word size on T3D is 8 bytes
while that on Delta and Paragon is 4 bytes).

Yor the study of same total size runs, we consider the
following problem S]. S1 has 128 x 128 x 128 (2.1 mil-
lion) cells and 162 million particles. This is the same
problem we have run using all 512 processors of the
Delta and Paragon in the last section. We run this
problem usingall three parallel computers considered
here. On Delta and Paragon, this problem is run using
all 512 processors. The total problem is decomposed
into 8 x8 x8 cubic subdomnains. Each subdomain has
16 x 16 x 16 cells and 3.16 x 10% particles (~ 77 parti-
cles/cell). On the Delta and Paragon, the memory re-
quired to run this problem on each node is 11.6 Mbytes,
The total memory size is an equivalent of 5.9 Gbytes.
This is about the largest problem that one can fit onto
the Delta system. Sincethe T3D has only 256 proces-
sors, to fit S1 on T3D we decompose this problem into
4 x 8 x 8 subdomains. Each subdomain has 32 x16 x 16
cells and 6.32 x 10°particles.

For maximum size runs, we consider the following
two problems, S2 and S3. S2 has a domain of 104 x
168 x 168 (2.9 million) cells and 225 million particles.
S2 is run only using the 13D (all 256 processors). Each
processor of T3D is loaded a subdomain of 26 x 21 x 21
cells and 8.8 x 10°particles (~ 76.5 particles/cell). The
memory required to run this problem on each processor
of the T3I) is 54 Mbytes. The total memory size is
an equivalent of 13.8 Gbytes. This is about the largest
problem that one can fit onto the 256 processor T3D.

S3 has a domain of 168 x 168 x 168 (4.74 million)
cells and 361.4 million particles. S3 is run only us-
ing the Paragon (all 512 processors). On the Paragon,
each processor is loaded a subdomain of 21°cells and
7.06 x 10°particles {~ 76.5 particles/cell). Themem-
ory required to run this problem on each processor of



-theParagon is 23.6 Mbytes. The total memory size is
an equiivalent of 12.1 Ghytes. This is about the largest
problem that one can fit onto the 512 processor Paragon.

in Table 2, we compare thetimesspent by different
portions of the code. For these runs, we also list coll-
sion times for calculation s using three different collision
probabilities P> =~ 0.002, P ~ 0.02, and I’ =~ 0.095.

one of the most important measure of the speed of
the PIC portion of the code is the particle push time
per particle per time step t***, which is listed in Table
3. For S1, t**** on the three parallel computers used
are:
trush ~ 115 nsecs/particle/step on 512-node Delta.
tru*h ~ 101 nsecs/particle/step on 512-node Paragon.
tPush ~ 105 nsecs/particle/step on 256-node T3D.
For S2 we find:
tPush ~ 100 nsecs/particle/step on 25 6-node T3D.
And for S3, we find:
tP¥*% o 104 nsecs/particle/step on 512-node Paragon.

To measure the speed of the MCC portion of the
code we use the collision time per collision: Teott/ncon.
Table 3 also lists Teon/neon for P~ 0.02 (an average
of 2% of total particles undergo a collision during each
time step). We find Teon/ncon is 420 nsecs for Delta,
294 nsecs for Paragon, and 330-361 nsecs for T3D.

In Fig. 5, we compare performance of maximum
problem runs on Delta, Paragon, and T3D as a func-
tion of the number of processors used or the “problem
size”. We plot the total run time per time step 1,¢ when
running S1 on Delta, S2 on T3D, and S3 on Paragon,
using different number of processors. To plot these run
times on the same figure, we use a unit of “problem
size” which is defined as the size for S1 on 1 node of the
Delta computer, i.e. 3.16 x 10°particles and 16°grid
cells. For comparison, the collision time per time step
T.oufor P~ 0.02 is atso plotted. Since S3 on Paragon
has the largest problem size per node and S1 on Delta
has the smallest problem size per node, the S3 Paragon
time is the highegt and the S1 Delta time is the low-
est. Fig.5 shong‘;"‘T,o, sta}ialmost constant as both the
problem size anfprocessor number are increased. This
indicates a high parallel efficiency has been achieved on
all three machines.

Finally, we compare the performance of the code On
MIMD parallel computers with that on a single proces-
sor Cray C90. For this study we choose one of the
largest Cray C90 available, the Cray C90 at NASA
Ames (The Von Neuman). The memory limit on the
NASA Ames Cray C90 is 128 Mwords (1.024 Gbytes).
This restricts that the largest problem we can fit on the

Cray C90 for -~ 77 particles/cell is 72°grid cells and
2.9 x 10'particles (or size <~ 91.13). Other thanthe
message-passing and global communications, the C90
version of the code is identical to the parallel version.
The C90 version of the code is cotnpiled using tile Cray
Fortran compiling system’s automatic vectorization and
optimiz ation. However, no xc-writing was done to op-
timize and vectorize the gather/scatter for the Cray.
Hence, the code performance on Cray may not be the
best performance one can get from a single CPU C90.

To compare the performance, we define the speedup
of the three MIMI) parallel computers as

S- (mf/.@cra,

(Teot/si2€)mrmp

(16)

When the problem size is small, the Cray super-
computer performs much better than the Delta and
Paragon. Coimpared to Cray C90, the speedup fac-
tor at size = 1 is Speedup =~ 0.12 for S2. However,
as the problein size increases, the time spent on the
C90 increases approximately linearly on the log state.
Extrapolating the run times on C90 to the maximum
problems allowed by the parallel computer, if one had
a Cray C90 large enough to run these problems, then
the speedup of the 51 2-processor Delta, 51 2-processor
Paragon, and the 256 processor 13D over the Cray C90
would be Spena=70,Sparagon = 82, and Stin= 84
respectively.

4. Summary and Conclusions

A MIMD parallel 3D electromagnetic PIC-MCC
code hasbeen developed. The code uses a standard
relativistic leapfrog scheme to push plasma particles,
a Monte Carlo scheme to calculate the collisions be-
tween plasma particles and the neutral background, and
a rigorous charge-conservation finite-difference method
to update electromagnetic fields. The code is par-
allelized using the Generat Concurrent PIC(GCPIC)
algorithm[5] which uses a domain decomposition to di-
vide the computation among the processors. ‘he code
is implemented on the 51 2-processor Delta and Paragon
using the Express Cubix and on the 256-processor Cray
T3D using PVM. It is shown that our 3D EM PIC-MCC
code runs with a high parallel efficiency of ¢ > 95% for
large size problems. We have also used the 3D PIC-
MCC code to benchmark Ielta, Paragon, and T3D.
When the problem size on each processor is identical,
T3D has relatively the best performance per proces-
sor. The sizes of the maximum problems we have
run on 512-processor Delta, 512-processor Paragon, and




256-processor T3D are162 million particles(2.1 million
cells), 361 million particles(4.7 million cells), and 225
million particles(2.9 million cells) respectively. Iach
problem was run with several million collisions per
time step. For these large scale simulations, the par-
ticle push time achieved is in the range of 100-115
nsccséparticlc/time step, and the collision calculation
timepin the range of a few hundreds nsecs per colli-
sion. Compared with the performance on a single CPU
Cray C90, this represents a factor of 70-80 speedup.
We find T3 has the best performance per processor
while Paragon has the best overall performance. The
timing results we obtained indicate that these MIMD
parallel supercomputers now allow certain large scale 3-
DEMPIC-MCC simulation studies be conducted, such
as simulations of plasma thruster plumes and Critical
lonization Velocity Experiments in Space.
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Figurc Captious

Figure 1: Domain decomposition of a 2-1) simulation
domain for 4 processors shosing processor subdomains
and guard ceils (shaded).

Figure 2: Flow chart for the parallel 3D electromag-
netic PIC-MCC code.

Figure 3: Parallel efficiency vs. number of processors
used. (Solid line with square: T3I).Dashed line with
circle: Paragon. Dotted line with triangle: Delta.)

Figure 4: Timing results for same problem size runs
on Delta, Paragon, and T3D. (Solid line with square:
T3D. Dashed line with circle: Paragon. Dotted line
with triangle: Delta.)

Figure 5: Timing results for maximum problem size
runs. (Solid line with square: T3D. Dashed line with
circle: Paragon. Dotted line with triangle: Delta. Dash
dotted line with cross: I-CPU Cray C90.)



Table 1: Comparison of the hardwares of paralel supercomputers at Caltech and JPL

Machine Delta Paragon Cray
Model ‘Prototype ._XPi_L_SS—‘ __~15_1) -
Nodes 513 512 | 256
Gflops 30.7 384 | 384
CcPU i860 XR | i860 XP(2) | DEC 21064
Speed 40 MHZ | 50 MHZ | 150 MHZ

Mflops/CPU N
double precision 60 75 150
single precision 80 100

Mbytes/node 16 32 64

Total Gbytes 8.2 164 164

Topology 2D(16X36) | 2D(16X36) | _3D Torus

particle grid cell | machine N, qrush  qpushcomu | pfield Tocti Teott (sec)

number number (sec) (sec) v=001 vr=01 v=205
S1 162 X 10° 128 Delta 512 | 18.62 0.60 013 0108 | 073 134 3.92
S1 162 x 106 128° Paragon 512 | 1648 052 _ | 0.085 0.065 | 0.58 094 246
S1 162 X10° 1283 T3D 256 | 1701 048 | 0.073 0.065 | 0.63 116 341
S2 225 x10® 104 x168° | T3D 256 | 22.52 067 | 0.083 0.039 | 0.88 1.44 3.75
S3 361.4 x 10° 168° Paragon 512 | 37.15 1.17 0.15 0098 | 129 2.11 5.50

Table 2: Time spent by different portions of the code for maximum problem size runs

particle grid cell TPuh [harticle (nsecs) T Neoll Teott [con (nsecs)
number number Delta Paragon 13D (1~ 0.02) Delta Paragon T3D
‘s1 162 x 108 128° 115 101 105 | 3.21 x105 420 294 361
S2 225 x10° 104 x 168" 100 | 449 x 106 330
S3 361.4 x 108 1683 104 7.16 x 106 294

Table 3: Particle push time/particle/step and Monte Carlo collision timne/collision for maximum prob-

lem size runs
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